Evento Framework
  • Introduction
  • Architecture Overview
    • Distributed Systems & Microservices
    • Recative Manifesto & Reactive Principles
    • State-of-the-art Patterns
      • DDD (Domain Driven Design)
      • CQRS (Command Query Responsability Separation)
      • Event Sourcing
      • Messaging
      • Saga
  • GETTING STARTED
    • Quick Start
    • TodoList - RECQ Tutorial
      • Problem Description and Requirement Gathering
      • RECQ Payload Design
      • RECQ Components Design
      • Set up your Development Environment
      • RECQ Payload Evento Implementation
        • Domain Commands
        • Domain Events
        • Views
        • Queries
      • RECQ Components Evento Implementation with Spring Data
        • TodoListAggregate
        • TodoList Model with Spring Data
        • TodoListProjector
        • TodoListProjection
        • TodoList Invoker
      • Expose the RECQ architecture with Spring Web
      • Test Your App
    • Extend TodoList - Handle Complexity Tutorial
      • Unique identifier generation
      • Extends behaviors with Observer and Services
      • Cross Domain Consistency with Sagas
      • Handle Real time data updates with MQTT and Save-Notify Pattern
  • RECQ Patterns
    • RECQ Patterns
    • RECQ System Pattern
      • Component
      • Message Gateway
      • System State Store
    • RECQ Communication Pattern
      • Component to Component
      • Component to System State Store
      • System State Store to Component
    • RECQ Component Pattern
      • Aggregate
      • Projector
      • Projection
      • Service
      • Invoker
      • Saga
      • Observer
  • Evento Framework
    • Evento Framework Introcution
    • Payload and Messages
      • Command
        • Domain Command
        • Service Command
      • Event
        • Domain and Service Event
      • Query and View
    • @Component
      • @Aggregate
        • Aggregate State
        • @AggregateCommandHandler
        • @EventSourcingHandler
      • @Projector
        • Projector @EventHandler
      • @Projection
        • @QueryHandler
      • @Service
        • @CommandHandler
      • @Invoker
      • @Saga
        • SagaState
        • @SagaEventHandler
      • @Observer
    • Dead Event Queues
    • EventoBundle
      • EventoServerMessageBusConfiguration
      • ConsumerStateStore
        • InMemoryConsumerStateStore
        • PostgresConsumerStateStore
        • MysqlConsumerStateStore
      • Context
      • TracingAgend and @Track
        • SentryTracingAgent
      • Autoscaling Protocol
        • ThreadCountAutoscalingProtocol
      • Injector and @Component
  • Evento Server
    • Evento Server Introduction
    • SetUp Evento Server
      • Advanced Options
      • Evento Event Store Modes: APES and CPES
    • Evento Server Cluster
    • Bundle Deploy Script
  • EVENTO GUI
    • Explore RECQ Systems Visually
    • GUI Auth
    • Payload Catalog
    • Component Catalog
    • Bundle Catalog
    • Cluster Status (Experimental)
    • Flows
      • Performance Evaluation
    • Application Graph
    • System State Store
  • Evento CLI
    • Evento CLI Introduction
    • Update Version
    • Publish
Powered by GitBook
On this page
  1. GETTING STARTED

Extend TodoList - Handle Complexity Tutorial

Congratulations! You've built a basic TodoList application. But what if you want to scale it up and ensure data integrity in a distributed environment? This chapter dives into advanced techniques to handle these complexities.

Here's what we'll explore:

  • Unique Identifier Generation with Sequence Consistency: As your TodoList grows and potentially involves multiple servers, assigning unique identifiers to Todo items becomes crucial. We'll delve into strategies for generating guaranteed unique identifiers while maintaining sequence consistency. This ensures that identifiers are created in a specific order, even when requests are processed by different servers simultaneously.

  • Extensible Behaviors: Learn to design your TodoList to accommodate future functionalities without compromising core functionality. We'll explore how Observers and Services can achieve this goal while maintaining Responsivity and Resilience.

  • Cross-Domain Consistency: Imagine a scenario where completing a Todo triggers an update in another system, like an ERP service. We'll delve into the concept of eventual consistency and how Sagas can help achieve consistency across different domains. We'll also discuss the concept of "inconsistent by design."

  • Real-Time Data with MQTT: Want to see your Todo list updates reflected instantly across devices? We'll explore how to integrate a real-time data provider like MQTT while considering its implications for eventual consistency within your TodoList application.

By the end of this chapter, you'll have a solid understanding of how to design and build robust TodoList applications that can scale and handle real-world complexities.

PreviousTest Your AppNextUnique identifier generation

Last updated 1 year ago